
Discrete Texture Design Using a Programmable Approach
Operator Set and Example Programs

Hugo Loi1, Thomas Hurtut2, Romain Vergne1, Joëlle Thollot1
1Inria-LJK (U. Grenoble, CNRS) 2LIPADE - U. Paris Descartes

1 Notations

In this document we present our operators and give the pseudo-code of the programs corresponding to the images in Figure 1. Our operators
manipulate scalars (boolean P B, integer P N, real P R), elements (0D points, 1D curves, 2D regions), sets of scalars or elements (spRq,
sp2Dq . . .), and other operators. Note that these operators are functors: they can be manipulated such as other variables. See below the
examples of declarations, initializations, partial application or composition of operators and allowed type overrides. We use the same notation
for these examples, the specification of our operator set and the pseudo-code of our programs.

Declarations, initializations, sets and operator syntax
r: 2D Declaration of a region
a: R � 1.1 Initialization of a real
pts: sp0Dq Declaration of a set of points
nbs: spNq � t1, 2, 3u Initialization of a set of integers
n: N � Size(nbs) Size of a set
nbs ! n Appending a new member to a set
predicate: (2D Ñ B) Declaration of a region Ñ boolean operator
pinning: (∅Ñ 0D) Declaration of an operator returning a point with no argument
translate: ((2D, 0D) Ñ 2D) Declaration of a multiple-argument operator
shaping: (0D Ñ 2D) = translate(r) Partial application of the previous operator
checkpoint: (0D Ñ B) = predicate � shaping Operator composition
regions: sp2Dq = shaping(pts) Application of an operator to a set of inputs
inv: (2D Ñ B) = Not � predicate Boolean operators are handled as our other operators
if (And(n¤5, true)) then n� 6 We use classic comparison, constants and control structures

Type overrides
transform: (2D Ñ 2D) = translate(pinning) (∅Ñ Type) operators can be used instead of Type variables
throwing: (0D Ñ 0D) = pinning (∅Ñ Type2) operators can be used instead of (Type1 Ñ Type2)
pinning = pts spTypeq can be used instead of a (∅Ñ Type) operator (but not conversely)
pin all: (Elt Ñ 0D) Declaration of an operator defined for each input type along element types
tran all: (Elt Ñ Elt) With this notation, output type is the same as input

2 Operators

Construction operators
RandomPinning: (2D Ñ p∅Ñ 0Dq) Pins random points in the given region
RegularPinning: ((2D, N,N) Ñ sp0Dq) Pins points on a grid covering the given region
RegularPinning1D: ((1D, R) Ñ sp0Dq) Pins regularly points on a curve with a given density
Centroid: (2D Ñ 0D) Pins the centroid of a region
TangentFlowField: (sp2Dq Ñ (0D Ñ 0D)) Computes points whose coordinates interpolate tangents of input regions
Contour: (2D Ñ 1D) Returns the contour of a region
Interpolation: (sp0Dq Ñ 1D) Returns a curve interpolating the given set of points
VoronoiCells: (sp2Dq Ñ sp2Dq) Returns the Voronoı̈ cells of the given region set (see technical details)
ApplyThickness: ((1D, (RÑ R)) Ñ 2D) Changes a curve into a region given a thickness function

Transformation operators
Translation: ((Elt, 0D) Ñ Elt) Translates any element at the given location
Rotation: ((Elt, R) Ñ Elt) Applies a rotation of the given angle to any element
Scale: ((Elt, R) Ñ Elt) Applies a homothetic transformation to any element

Scalar operators
CountUpTo: (NÑ (∅Ñ B)) Predicate returning true n times, and then false
Overlap: ((sp2Dq, Elt) Ñ B) Computes an overlap test between any element and a set of regions
RandomR: ((R,R) Ñ (∅Ñ R)) Random number generator given a real range
Distance: ((Elt, Elt) Ñ R) Distance between two elements
MinimalDistance: ((sp2Dq, Elt, R) Ñ B) Computes a minimal distance test between any element and a set of regions

Input / Output
Image: (∅Ñ 2D) The boundary of the image
BuiltinHatch: (∅Ñ 2D) Built-in small hatch-shaped region
BuiltinRectangle: (∅Ñ 2D) Built-in large rectangle-shaped region
BuiltInCircle: (∅Ñ 2D) Built-in small circle-shaped region
User(Type) or User(AÑ B) User-specified Type variable or (AÑ B) operator
Display: (sp2Dq Ñ ∅) Display operator for tests (see technical details)

3 Programs for Example Images

3.1 Classic Distribution Algorithms

Greedy Distribution Algorithm
greedy distribution: (

(out: sp2Dq, loop condition: (∅Ñ B), pinning: (∅Ñ 0D),
shaping: (0D Ñ 2D), checking: (2D Ñ B)) Ñ ∅)

out = {}
while (loop condition) do {

p: 0D = pinning
r: 2D = shaping(p)
if (checking(r)) then out ! r }

Region-Based Relaxation Algorithm
relaxation: (

(in: sp2Dq, out: sp2Dq, loop condition: (∅Ñ B),
reshaping: (sp2Dq Ñ sp2Dq), repinning: (2D Ñ 0D) Ñ ∅)

out = in
while (loop condition) do {

s: sp2Dq = reshaping(out)
pts: sp0Dq = repinning(s)
shaping: (0D Ñ 2D) = Translation(s)
out = {}
for (p in pts) do out ! shaping(p) }

3.2 Figure 1a -1d

Figure 1a � Classic anisotropic dart throwing
hatches: sp2Dq
greedy distribution(

hatches, CountUpTo(1000), RandomPinning(image),
Translation(BuiltinHatch), Not � Overlap (hatches))

Display(hatches)

Figure 1d � User-drawn region and variable shaping
shapes: sp2Dq
shaping: (0D Ñ 2D) = Translation (

Rotation(RandomR(0, 2π)) �
Scale(User(∅Ñ R)) �
User(2D))

greedy distribution(
shapes, CountUpTo(4000), RandomPinning(image),
shaping, Not � Overlap(shapes))

Display(shapes)

Figure 1b � Constrained dart throwing
rectangles: sp2Dq
greedy distribution(

rectangles, CountUpTo(25), RegularPinning(image, 5, 5),
Translation(BuiltinRectangle), Not � Overlap(rectangles))

hatches: sp2Dq
greedy distribution(

hatches, CountUpTo(1000), RandomPinning(image),
Translation(BuiltinHatch),
And (Not � Overlap(hatches), Overlap(rectangles)))

Display(hatches)

Figure 1c � Composition of 1b with following instructions
hatches orth: sp2Dq
greedy distribution(

hatches orth, CountUpTo(3000), RandomPinning(image),
Translation (Rotation(π

2
) � BuiltinHatch),

And (Not � Overlap(hatches), Not � Overlap(hacthes orth)))
Display(hatches orth)

3.3 Figure 1e -1g

Circle Distribution � A routine used in Figure 1e -1g
circle distribution: (∅Ñ s(2D))

circles: sp2Dq
greedy distribution (

circles, CountUpTo(User(N)), RandomPinning(image),
Translation(BuiltInCircle), Not � Overlap(circles))

relaxed circles: sp2Dq
relaxation (

circles, relaxed circles, CountUpTo(User(N)),
VoronoiCells, Centroid)

return relaxed circles

Stream Lines � A routine used in Figure 1f -1g
stream line: (

(start: 0D, flow field: (0D Ñ 0D), check: (0D Ñ B),
length: R) Ñ 2D)

pts: sp0Dq
curr pt: 0D = start
curr length: R � 0.0
condition: (∅Ñ B) = And(curr length¤length, check(curr pt))
next: (0D Ñ 0D) = Translate(flow field)
while (condition) do {

pts ! curr pt
next pt: 0D = next(curr pt)
curr length = curr length + Distance(curr pt, next pt)
curr pt = next pt }

return ApplyThickness(User(RÑ R)) � Interpolation(pts)

Figure 1e � Texturing with transformation of Voronoı̈ cells
shapes: sp2Dq = VoronoiCells � circle distribution
shapes = Scale(shapes, User(∅Ñ R))
Display(shapes)

Figure 1f � Circle distribution and stream lines
relaxed circles: sp2Dq = circle distribution
Display(relaxed circles)
stream lines: sp2Dq
shaping: (0D Ñ 2D) = stream line(

TangentFlowField(relaxed circles),
And(

Not � Overlap(circles),
Not � Overlap(stream lines)),

User(R))
greedy distribution(

stream lines, CountUpTo(2000), RandomPinning(image),
shaping, And(

Not � Overlap(circles),
Not � Overlap(stream lines)))

Display(stream lines)

Figure 1g � Interlocked 1D distribution of stream lines
relaxed circles: sp2Dq = circle distribution
stream lines: sp2Dq
pinning: sp0Dq =

RegularPinning1D(Contour(relaxed circles), User(R))
shaping: (0D Ñ 2D) = stream line(

Rotation(π
6

) � TangentFlowField(relaxed circles),
Not � Overlap(stream lines), User(R))

greedy distribution(
stream lines, CountUpTo(Size(pinning)),
pinning, shaping,
Not � MinimalDistance(stream lines, User(∅Ñ R)))

Display(stream lines)

scnd strlines: sp2Dq
pinning = RegularPinning1D(Contour(stream lines), User(R))
shaping = stream line(

TangentFlowField(relaxed circles),
Not � Overlap(stream lines), User(R))

greedy distribution(
stream lines, CountUpTo(Size(pinning)),
pinning, shaping,
Not � MinimalDistance(scnd strlines, User(∅Ñ R)))

Display(scnd strlines)

4 Technical details

• We show our operator set and example programs in pseudo-code with a notation specified at the beginning of the document. In practice,
our operator set is implemented as a C++ library and each operator is a separate functor class. Thus, the programs are C++ functions
and each line of pseudo-code in this document is implemented with a line of C++ source code.

• 1D and 2D types depend on the underlying implementation. In the current version, we compute curves as non self-intersecting polylines
and regions as non self-intersecting polygons without holes.

• We implement the computation of Voronoı̈ cells from any region set with the method from [Hoff et al. 2000] and polygon fitting.

• Our system produces discrete textures that can be saved as an SVG file or rendered directly with a very simple style (Display operator).
Stylizing such discrete textures is out of the scope of our contribution and is a very interesting avenue for future works.

References

HOFF, III, K. E., CULVER, T., KEYSER, J., LIN, M., AND MANOCHA, D. 2000. Fast computation of generalized voronoi diagrams using
graphics hardware. In Proceedings of the 16th annual Symposium on Computational Geometry, Clear Water Bay, Kowloon, Hong Kong,
ACM, New York, NY, USA, SCG ’00, 375–376.

